

Observation of Pulsed Field-Emission from a Carbon-Nanotube Cathode a HBESL (E-1023)* [on-going work]

collaborators: Radiabeam (PI): J. Hartzell, L. Fallace, CNSI: C. Regan, W. Hubbard, FNAL: J. C. Thangaraj, NIU: D. Mihalcea, H. Panuganti presented by P. Piot (FNAL & NIU)

Fermilab's All Experimenters meeting, April 28th, 2014

*sponsored by the DOE awards DE-SC0004459 to Radiabeam and DE-AC02-07CH11359 to the Fermi Research Alliance LLC.

High-Brightness Electron Source Lab (HBESL)

- Mission: R&D on esources and lasers
- Facilities:
 - ultra-fast laser system
 - 1.3-GHz RF gun+ beamline

Recent/on-going experiments:

- 2-photon e- emission from Cs₂Te,
- field-emission from diamond arrays,
- high-current field-emission from CNT
- VUV light via inverse Compton scatt.
- tailored e- bunch with laser spatio-temporal shaping.

Field Emission (FE) & Carbon-nanotube (CNT) Cathodes

• Current density material-dependent parameters $j(t) = A(\phi)\beta_e^2 E_z(t)^2 \exp\left(-\frac{B(\phi)}{\beta_e E_z(t)}\right)$

 FE is appealing: no need for an ultra-stable auxiliary laser system

applied

macroscopic field

- Array of field emitters

 high current w.

 reduced beam quality, or patterned beams

enhancement

factor

Pulsed field emission

- Pulsed field emission can be realized by locating the field emitter in a t-dependent field
- single-frequency RF gun not ideal: rms emission time is

 $\sigma_t \simeq \omega^{-1} [\beta_e E_0/B(\phi)]^{1/2}$ rf macroscopic field frequency on cathode

 experiments at HBESL uses a 1.3-GHz gun...

Beam current + beam density

Observation of pulsed field emission

- electromagnetic pick-up located downstream of the electron source used to detect bunch e.m. fields
- observed 1.3 GHz and harmonic (up to 4th harm).
- inferred bunch
 length is ~ 50-70 ps
- no significant dependence on applied E field

Summary/Future

 Preliminary data on field emission from carbonnanotube cathode are encouraging

current in excess of 300 mA have been

observed

 current stability was measured to be <5% over ~4 hours

 Smaller-area cathode being prepared at CNSI

• Next round of tests (June) %.0 0.5 1.0 1.5 2.0 2.5 3.0 will focus on beam emittance measurements

Credits

- At Fermilab the following people crucially contributed to the success of this experiment:
 - P. Prieto and H. Pfeffer (fixed our pulse transformer),
 - J. Reid, and T. Kubicki (RF support)
 - N. Eddy (fast scope)
- Support from AD/APC
 - E. Harms, S. Nagaitsev, and V. Shiltsev.
- NIU Grad. students: F. Lemery, B. Blomberg (cathode installation, RF measurements)